skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Casiulis, Mathias"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In statistical mechanics, measuring the number of available states and their probabilities, and thus the system’s entropy, enables the prediction of the macroscopic properties of a physical system at equilibrium. This predictive capacity hinges on the knowledge of the a priori probabilities of observing the states of the system, given by the Boltzmann distribution. Unfortunately, the successes of equilibrium statistical mechanics are hardto replicate out of equilibrium, where the a priori probabilities of observing states are, in general, not known, precluding the naı̈ve application of common tools. In the last decade, exciting developments have occurred that enable direct numerical estimation of the entropy and density of states of athermal and non-equilibrium systems, thanks to significant methodological advances in the computation of the volume of high-dimensional basins of attraction. Here, we provide a detailed account of these methods, underscoring the challenges present in such estimations, recent progress on the matter, and promising directions for future work. 
    more » « less
  2. We show that an analogy between crowding in fluid and jammed phases of hard spheres captures the density dependence of the kissing number for a family of numerically generated jammed states. We extend this analogy to jams of mixtures of hard spheres in d = 3 dimensions and, thus, obtain an estimate of the random close packing volume fraction, ϕRCP, as a function of size polydispersity. We first consider mixtures of particle sizes with discrete distributions. For binary systems, we show agreement between our predictions and simulations using both our own results and results reported in previous studies, as well as agreement with recent experiments from the literature. We then apply our approach to systems with continuous polydispersity using three different particle size distributions, namely, the log-normal, Gamma, and truncated power-law distributions. In all cases, we observe agreement between our theoretical findings and numerical results up to rather large polydispersities for all particle size distributions when using as reference our own simulations and results from the literature. In particular, we find ϕRCP to increase monotonically with the relative standard deviation, sσ, of the distribution and to saturate at a value that always remains below 1. A perturbative expansion yields a closed-form expression for ϕRCP that quantitatively captures a distribution-independent regime for sσ < 0.5. Beyond that regime, we show that the gradual loss in agreement is tied to the growth of the skewness of size distributions. 
    more » « less